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Abstract-High-accuracy bench mark solutions are presented for the natural convection flow around a 
horizontal circular cylinder with uniform surface temperature. In the past two decades. several approximate 
and numerical solutions to this problem have been reported in the literature. However, owing to limitations 
of(i) computer running time (CPU time) and (ii) resolution of the solution methodology, no exact bench 
mark solution has been presented to date. A large computational domain is inevitably necessitated in the 
case of small Rayleigh numbers. A thin boundary layer forms when the Rayleigh number increases, thereby 
requiring high resolution in the vicinity of the cylinder surface. Both of these features make it difficult to 
obtain exact bench mark solutions. These difficulties were overcome by adopting a high-accuracy fourth- 
order finite difference method and a coordinate transformation technique. The present bench mark solutions 
are accurate to at least three decimal places for small Rayleigh numbers (e.g. Ra = IO’ and IOJ) and will 
be quite useful as standard comparison solutions to which many numerical solutions can be compared. 
Further, typical isotherms. streamlines, vorticities. local Nusselt numbers, tangential and radial velocities 

and temperature distributions were clarified in detail. 

1. INTRODUCTION 

NATURAL convection around a horizontal circular cyl- 
inder under constant temperature or constant heat 
flux conditions in an infinite fluid space has recently 
attracted much attention [l-3]. This problem is of 
importance not only in practical heat transfer equip- 
ment but also in that it poses a standard heat transfer 
problem which can be regarded as a bench mark solu- 
tion to validate numerical methodologies of various 
kinds. 

In the past decade, extensive studies on natural 
convection flow about a horizontal circular cylinder 
have been presented. Kuehn and Goldstein [I] have 
solved the full Navier-Stokes and energy equations 
for natural convection around an isothermal circular 
cylinder over a wide range of Rayleigh numbers from 
IO0 to IO7 using a finite difference scheme. They used 
neither the boundary layer approximation nor a curvi- 
linear coordinate system. They presented the local and 
average Nusselt numbers for a wide variety of the 
Rayleigh and the Prandtl numbers with experimental 
data using a Mach-Zehnder interferometer. 

The inflow and outflow boundary conditions were 
imposed at the artificially placed outer boundary. These 
conditions may be valid only in the steady state con- 
dition, as discussed in Wang et al.‘s paper 131. 

Just after Kuehn and Goldstein’s work, Fujii et al. 
[4] presented theoretical and experimental results on 
natural convection heat transfer about a horizontal 
wire. They used two computational domains: one is 
a domain near the cylinder prescribed by a cylindrical 

coordinate system and the other is one outside this 
domain prescribed by a rectangular coordinate 
system. The inner boundary was located at rc = 40r,, 
r. being the cylinder diameter. The vertical outer edge 
was positioned to be 170~~. They utilized two outer 
boundary conditions : an open boundary condition 
and a solid boundary condition in order to check the 
validity of the boundary conditions. Although they 
did not present the numerical results for relatively 
large Rayleigh numbers (i.e. Ra = IO’-105), it seems 
to the present authors that their results for Ra = 0.37 
are quite accurate and reliable even now. In this sense, 
their paper is the best of those in the last two decades. 

Recently, Wang et al. [3] solved the same problem 
as the one treated by Kuehn and Goldstein. Necess- 
arily, the governing equations and the boundary con- 
ditions including inflow and outflow conditions at the 
outer imaginary boundary were exactly the same. 

The numerical methodology used in their com- 
putations was the spline fractional step method 
(SFSM), which they claim can achieve more accurate 
solutions than existing finite difference methods using 
fewer grid points, resulting in a considerable saving in 
computer memory requirements. They also presented 
the numerical results for (i) uniform surface heat flux 
and (ii) mixed boundary conditions other than iso- 
thermal surface conditions. 

Wang et al. also made a comparison between their 
numerical results and those obtained by Kuehn and 
Goldstein under an isothermal surface boundary con- 
dition for different Rayleigh numbers and found a 
good agreement with their results. The maximum 

1251 



I252 T. SAITOH et 01. 

u 
D 
Fo 
9 
Gr 
h 
ha 
h, 

k 

L 

Nil 
NM 
Pt 
r 
Ra 

NOMENCLATURE 

thermal diffusivity 
cylinder diameter 
Fourier number, at/D’ 
gravitational acceleration 
Grashof number, gpATD’/v’ 
AX 
local heat transfer coefficient 
average heat transfer coefficient around 
cylinder 
thermal conductivity of fluid or time step 
(Ad 
radial distance between cylinder surface 
and outer boundary of solution 
domain 
number of mesh points in r and 0 
directions, respectively 
local Nusselt number, h,D/k 
average Nusselt number 
Prandtl number, v/a 
radial coordinate 
Rayleigh number, Pr Gr 
dimensionless time, t/a/D’ 

AT 
u 
u 
V 

V 
AX. 

Y 
Y* 

Greek 

; 
I) 

w 

T,-T, 
dimensionless radial velocity, UD/cc 
radial velocity 
dimensionless angular velocity, VD/a 
angular velocity 

A,r mesh length in .Y and J’ directions, 
respectively 
radial distance from cylinder surface 
Y R~I”~/D. 

symbols 
thermal diffusivity 
coefficient of thermal expansion 
angular coordinate ; zero is downward 
vertical positive counterclockwise on 
right half of cylinder 
kinematic viscosity 
dimensionless stream function 
difference between neighboring 
streamlines 
dimensionless vorticity. 

IT time 
At time step Subscripts 
T dimensionless temperature, i,j nodal position in radial and angular 

V-T,MTw-7-r.) directions, respectively 
TW temperature of cylinder surface max maximum value 
TZ, temperature of ambient fluid min minimum value. 

deviation between the two solutions was 1.6%. Other 
recent studies [l-3] were also introduced in Wang et 
al’s paper. 

However, the inflow and outflow conditions used 
by Kuehn and Goldstein and Wang et al. do not 
give the correct results including streamlines and the 
Nusselt number around the cylinder. The only excep- 
tional study is the one by Fujii et al., previously 
introduced. However, to date, no exact bench mark 
solution for this standard comparison problem to 
which various numerical solutions are to be compared 
has been given in the literature. It seems that even the 
two solutions (i.e. KuehnGoldstein and Wang et al.) 
introduced above contain errors of more than 2%, so 
that the two numerical solutions cannot be regarded 
as the standard bench mark solutions. Bench mark 
solutions to natural convection flow in a square 
channel with two hot and cold vertical and two adia- 
batic horizontal boundaries have already been 
obtained by Saitoh and Hirose [S] (up to four sig- 
nificant figures) and de Vahl Davis [6] (up to two 
significant figures). 

Motivated mainly by the above circumstances, we 
aim to find the bench mark solutions for the natural 
convection heat transfer problem around a horizontal 
circular cylinder under isothermal conditions. In 

order to make verification of the computed results, 
five different kinds of numerical methodologies have 
been used in the present work : 

(i) the ordinary explicit finite difference method 
G-M); 

(ii) the multi-point FDM with uniform mesh of 
order O(Ar“) with Ar being the spatial mesh 
length ; 

(iii) the multi-point FDM with two computation 
domains ; 

(iv) the multi-point FDM with logarithmic coordi- 
nate transformation ; 

(v) the multi-point FDM with logarithmic coordi- 
nate transformation and a solid boundary 
condition. 

In the last scheme, we adopted the solid boundary 
condition as the outer boundary condition (see Fig. 
1) in order to eliminate an ambiguity of the outer 
boundary. The solid boundary condition was placed 
at some 100&20000 times the cylinder diameter, 
depending on the Rayleigh number. The computational 
domain has a key influence on the flow patterns and 
the Nusselt number distributions around the cylinder. 
First, we will show the governing equations with the 
boundary conditions, then numerical methods and, 
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finally, numerical results via the various methods 1 al// a* 
mentioned above. UC-- 

r ae’ v= -ar. (5) 
The present bench mark solutions are accurate to 

at least three decimal places for Rayleigh numbers Only half the domain was solved as the Row is 
(ranging from Ra = 10’ to lo’), and will be quite symmetrical about the vertical plane, including the 
useful as standard comparison solutions to which cylinder axis. 
many numerical solutions can be compared. The boundary conditions are 

Further, typical isotherms, streamlines, vorticities, 
local Nusselt numbers, tangential and radial velocities 
and temperature distributions around the cylinder are 
clarified in detail. 

on the isothermal cylinder surface : 

as+b 
u=u=*=o, 0=-p, T=l; (6) 

2. GOVERNING EQUATIONS 
on the symmetry lines : 

Figure 1 shows the geometry of interest with cylin- au ar 

drical polar coordinates. The dimensionless Navier- 
v=II/=w=ao=ao=o. (7) 

Stokes and energy equations for steady, laminar 
natural convection flow may be written under the As for the outer boundary conditions, we adopted the 

following two kinds of conditions Boussinesq approximation as follows : 

( ) fl a m ow and outflow condition : (1) aT aT UaT -= 
at -uz -; ao +V’T 

aw au v ao -= 
at -u- - - - +PrV’w 

ar r ae 

ar c0sea7- 
sinOr+YdB 

> 

w = -V’l(l 

with Laplacian V 2 

v2_=$+!l? I a? 
r&+7@ 

and the stream function Ic, 
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I , 
9 

Symmetry line 

-.- .._. ,_, imaginary boundary 
._ __ or solid boundary 

,’ 
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__,’ 
_-* 

___-- - -  
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at the inflow region 

a++b I a?* LI=~=T=O, WC ----;?; 
r- ae- 03) 

at the outflow region 

(b) solid boundary condition (methodology (v)) : 

(4) a'* v=u=ll/=T=O, w= -7 
ar- (10) 

The inflow-outflow condition has the same outer 
boundary conditions as in the paper of Kuehn and 
Goldstein. In this case, two boundary conditions are 
given at the artificial boundary according to the inflow 
and outflow situation. The point of maximum stream 
function is selected as the boundary splitting inflow 
and outflow. However, this inflow-outflow condition 
gives a considerable error, especially when the 
Rayleigh number is small. 

Coordinate transformation 
In order to implement computation in a wide 

domain subject to the solid boundary condition men- 
tioned above, it is desirable to perform a coordinate 
transformation. Such a coordinate transformation 
technique is also necessary to improve the resolution 
of the solution near the cylinder surface. In this study, 
we utilized a logarithmic coordinate transformation 

q = In r. (11) 

By virtue of this transformation, the resultant govern- 
ing equations can be written as follows : 

FIG. I. Schematic model and coordinate system for steady 
laminar natural convection around a horizontal isothermal 

circular cylinder. 
dT u dT v aT -= _--_-- 
af r al 

r ae +V’T (12) 
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au u am v aw 
-= _----- 
af i- aq 

r ao +PrV’w 

sin 0 aT cos 0 dT 
+PrRa ~ -++- 

r aq r a0 > 
(13) 

(JJ = -v$j 

with Laplacian V’ 

and the stream function II, 

1 a* 1 a* UC---, 
r do 

L’= --- 
r au’ 

Of course, r is given by 

r = exp rl 

(14) 

(15) 

(16) 

(17) 

3. METHOD OF SOLUTION 

In order to check and validate the proposed bench 
mark solutions (BMSs), we used five kinds of solution 
approaches using two kinds of finite difference 
methods : 

(i) explicit FDM with uniform grids (EX-I) ; 
(ii) multi-point FDM with uniform grids (ME-l) ; 

(iii) multi-point FDM with two computational 
domains (ME-2) ; 

(iv) multi-point FDM with logarithmic trans- 
formation (ME-3) ; 

(v) multi-point FDM with logarithmic transfor- 
mation and solid boundary condition (ME-4). 

The above five schemes are listed in Table I with the 
degree of accuracy. Schemes (ii), (iii), (iv) and (v) have 
a degree of accuracy of fourth-order 0(/r“), with h 
being the mesh length. 

In order to cope with the high Rayleigh number 
problem under moderate cost performance and allow- 

able accuracy, two major tools are used, i.e. a high- 
degree-of-accuracy finite difference scheme and coor- 
dinate transformation. These are indispensable fac- 
tors when dealing with multi-dimensional, especially 
three-dimensional, problems since the computer run- 
ning time (CPU time) is roughly proportional to h”+ ‘, 
n being the number of dimensions. Therefore, to 
decrease the CPU time, it is most effective to use a 
coarse mesh length. However, this will result in con- 
siderable degradation of resolution of the numerical 
results. 

Generally speaking, the following three con- 
siderations, including numerical methods and tech- 
niques, are required to obtain accurate and reliable 
bench mark solutions : 

(9 

(ii) 

(iii) 

numerical methodology, for example fourth- 
order FDM ; 
coordinate transformation, which is efficacious 
to improve high resolution near the cylinder 
and to cover a wide computational domain ; 
outer boundary condition; for example, the 
inflow-outflow condition or the solid bound- 
ary condition. 

Multi-point finite d#erence scheme 

The multi-point explicit finite difference method 
(MEFDM) was first presented by Saitoh. Four multi- 
point schemes, i.e. multi-point explicit, multi-point 
implicit, multi-point Adams-Bashforth, and multi- 
point DuFort-Frankel, have been proposed. 

The multi-point approximations of the first and 
second derivatives, for example, are described as 
follows : 

au ui-2-8ui_,+8ui+,-~,+~ 

z i., = 12h 
+;h$$.. 

(18) 

Table 1. Five finite difference schemes with grid fineness. degree of accuracy and computation domain to obtain bench mark 
solutions 

Abbreviations FDM 
Grids 

(MXiv) 

Degree Computation 
of domain, 

accuracy L B.C. Remarks 

(9 

(ii) 

EX-I 

ME-I 

Explicit 

Multi-point I51 

uniform 
(120x 72) 
uniform 

(iii) ME-2 

_ 
(120x 72) 

Multi-ooint two different 

(iv) 

(VI 

ME-3 Multi-point 

ME-4 Multi-point 

grids (h , , h J 
(50x72),(50x72) 

logarithmic 
transformation 

X = In (r) 
(120x 72) 

logarithmic 
transformation 

X = In (r) 
(I 20 x 72), (300 x 144) 

W*) 

OW) 

O(hi 

I .5-3 

1.5-3 

3-8 

inflow and h : mesh 
outflow length 

inflow and 
outflow 

inflow and h, > hz 
outflow 

W) 5-12 inflow and 
outflow 

OW) loo&20 000 solid 

B.C., outer boundary condition. 
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ah -u,~Z+16u,~,-30~i+16~i+,-~,+~ 
a+y 2 ,,, 12h’ 

The above central difference was used for the ad- 
vection terms of the Navier-Stokes equations. The 
truncation error T,,, of the MEFDM for the one- 
dimensional heat conduction equation is given by 

- u, - 2.1 + 1% - I.,- 3044 + 164 + I., -u, + z., - 
12h’ 

au ah ( > kd’u hJa% k2d’u - --2 a f a.x ,., = 2 dr’ + 90 ax6 + X ar’ 
h6 a% 

+ 1008 p + . .. (20) 

The stability range of the MEFDM is prescribed by 

k 3 
jpg 

for the one-dimensional heat conduction equation. 
It is important that all boundary conditions are 

expressed by the fully fourth-order equations. For 
example, the fully fourth-order expressions for the 
typical boundary conditions are shown below 

(i) adiabatic condition 

zl- I., = u,+ 1.1; 4 - ?,, = u, + I., ? 

(ii) constant temperature condition (u,, = C) 

u,,j = c; u,- ,., = 2c-ui, ,., ; 

(iii) vorticity at the wall in Poisson’s equation 

w,, = V’$ when I(li., = g = 0 
, 

- b+Qn+ 441 

w,- 1.1 = 6~,.,-15~i+~~j+2O~,+~.j-l50;+~., 

+ 6wt + 4.j - 0, + s.1. 

The mesh length, computational domain (distance 
between cylinder surface and imaginary boundary) 
and the time step for typical Rayleigh number are 
listed in Table I. In the two-uniform grid compu- 
tation, two different grids were used in order to raise 
the degree of accuracy in the vicinity of the cylinder, 
i.e. the finer mesh was employed for the inner domain 
near the cylinder surface. 

One typical feature of the natural convection flow 
around a horizontal circular cylinder over a wide 
range of Rayleigh numbers is that the computational 

domain extends a considerable distance from the cyl- 
inder surface, especially when the Rayleigh number is 
small. 

So, it is quite efficient if a coordinate transformation 
such as logarithmic transformation is adopted. The 
grid size near the cylinder surface will be only l/60 to 
l/80 of the cylinder radius, thereby assuring the degree 
of accuracy. Further, the computation domain can be 
enlarged to loo&20 000 times as wide as the cylinder 
radius. 

The computer running time for a typical parameter 
set(Ar=10-4,M=120,N=72)wassome3x10ss 
on a Data General AV-300. 

4. BENCH MARK SOLUTIONS AND OTHER 
COMPUTED RESULTS 

Numerical calculations were carried out for an iso- 
thermal circular cylinder with fixed Prandtl number 
Pr = 0.7 and Rayleigh numbers ranging from 
Ra = 10’ to IO ‘. Typical computed results for stream- 
lines, isotherms. vorticities and tangential velocity 
distributions are shown in Figs. 2-5 with different 
Rayleigh numbers. As indicated in the previous 
studies, the boundary layer becomes thin with increas- 
ing Rayleigh number. These results have been 
obtained by using methodology (v) and only the vicin- 
ity near the cylinder was enlarged. 

Time sequences of isotherms and streamlines are 
designated in Fig. 6. It is seen that the heated fluid 
ascends with formation of a heated cap. This heated 
cap eventually approaches the solid boundary, which 
is an artificial boundary, and disappears in the vicinity 
of the solid boundary. 

While the center of the vortex is initially formed 
very near the cylinder, it moves upwards with elapse 
of time and stays at a certain position. Then a steady 
state condition will prevail at this time point. In order 
to avert an influence of the existence of the solid 
boundary on the free flow pattern, the solid boundary 
should be placed 200-500 times further away from the 
cylinder diameter. As seen from Fig. 2(a), the solid 
boundary placed at about 7000 has no influence on 
the heat transfer characteristics in the steady state 
condition. 

A comparison between the present numerical solu- 
tion and that of Fujii et al. for Pr = 0.7 and Ra = 0.37 
is shown in Fig. 7. The present results are in good 
agreement with their numerical results at peripheral 
angles of &60”, and after that, with their experimental 
results. It is especially noted here that Fujii et al.3 
results can be judged to be quite excellent since their 
results were obtained as early as 1982. 

The Nusselt number profiles of four different 
research groups are shown in Fig. 8 for Pr = 0.7 and 
Ra = 104. Five numerical results, including the pre- 
sent bench mark solutions, are compared in the figure. 
It is quite surprising to see the large discrepancies 
among the four numerical results. The principal cause 
of this discrepancy lies in the fineness of the grid 



1256 T. SAlTOH el al. 

\ 

2(a). Computed isotherms and streamlines for FIG. 3(a). Computed isotherms and vorticities for Ra = 
Ra = 0.37 and Pr = 0.7. and Pr = 0.7. 

IO’ 

’ T : O(O.1)l.O Ati = 2.0 AIL = 2.0 Vmu. = 52.0 

FIG. 2(b). Computed isotherms and streamlines for FIG. 3(b). Computed streamlines and tangential velocity 
Ra = 0.37 and Pr = 0.7. distribution for Ro = IO’ and Pr = 0.7. 

spacing used and the width of the computation cylinder radius by introducing a logarithmic coordin- 
domain. In our present analysis, the high-accuracy ate transformation. 
fourth-order FDM was adopted and the computa- Figure 9 shows a comparison between the present 
tion domain was also enlarged to 700-2000 times the BMSs and the experimental data of Didion and Oh 

Table 2. Comparison of the present bench mark solutions with the results of Kuehnaoldstein and Wang et al. for Ro = IO’, 
IO4 and IO’ 

NU 

Ra e = 0” 30” 60” 900 120 150 180” Ti 

IO’ Present 3.813 3.772 3.640 3.374 2.866 1.975 I.218 3.024 
Kuehn and Goldstein [I] 3.89 3.85 3.72 3.45 2.93 2.01 I .22 3.09 
Wang ef ul. [3] 3.86 3.82 3.70 3.45 2.93 1.98 1.20 3.06 

IO4 Present 5.995 5.935 5.750 5.410 4.764 3.308 1.534 4.826 
Kuehn and Goldstein [I] 6.24 6.19 6.01 5.64 4.82 3.14 I .46 4.94 
Wang et al. [3] 6.03 5.98 5.80 5.56 4.87 3.32 1.50 4.86 

IO5 Present 9.675 9.557 9.278 8.765 7.946 5.891 I .987 7.898 
Kuehn and Goldstein [I] IO.15 10.03 9.65 9.02 7.91 5.29 1.72 8.00 
Wang ef al. [3] 9.80 9.69 9.48 8.90 8.00 5.80 I .94 7.97 
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I 
T-0(0.1)1.0 w,,t.s = 3G30. w ,,,,,, = -5GO 

FIG. 4(a). Computed isotherms and vorticities for Ra = IO' 
and Pr = 0.7. 

T 0(0.1)I.0 ~~,,,.i = 6360, wm,,, = - 13'20 

FIG. 5(a). Computed isotherms and vorticities for Ra = IO' 
and Pr = 0.7. 

Ad = 2.0 hOI = 309 

FIG. 4(b). Computed streamlines and tangential velocity 
distribution for Ra = IO4 and Pr = 0.7. 

[7], Eckert and Soehngen [8], and, Kuehn and 
Goldstein [l] for Ra = IO’. Although the present 
results are slightly lower than the experimental data, 
the cause of the difference cannot be attributed to the 
error of computation as the measurement contains 
significant error. 

The present bench mark solutions are listed in Table 
2 together with the results of KuehnGoldstein and 
Wang ef al. The grid sizes (radial and peripheral), 
computation domain L, and other conditions used 
for the present calculation are listed separately in 
Table 1. 

Further, the numerical results by using five schemes 
are compared in Table 3. This comparison gives 
strong evidence that the present BMSs are correct, at 
least to three decimal places. Comparison of the pres- 
ent BMS with the other two numerical results (Table 

Ati = 4.0 ",,,., = 609 

FIG. 5(b). Computed streamlines and tangential velocity 
distribution for Ra = IO’ and Pr = 0.7. 

2) clearly shows that there is a large difference at 
B = o”, i.e. at the lower stagnation point. 

It is quite difficult to obtain high-accuracy bench 
mark solutions even for such a simple geometry as is 
treated in this paper. The computer running time and 
core memory prevent one from obtaining accurate 
BMSs if the ordinary three-point FDMs of order 
O(h’) are used. 

In this sense, the numerical methodologies pre- 
sented here to obtain BMSs are marked features of 
high efficiency using scaled grid spacing and high 
truncation error of order O(h4). These features are 
indispensable in order to obtain the BMSs. 

Further, it is noted here that we have performed an 
additional numerical computation using a variable 
mesh finite difference scheme and obtained the same 
results as introduced in this paper. 
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2lti = 2.0 

Fo=O.Ol Fo=0.07 Fo=O.O9 Fo=O.O95 Fo=O.ll 
FIG. 6. Time sequences for isotherms and streamlines (Ru = IO”, Pr = 0.7). 

We hope that the present BMSs will be validated by (i) The bench mark solutions (local and average 
making comparisons with precise experiments using Nusselt numbers) were obtained for Ra = IO’-IO’, 
high-accuracy measuring techniques. under the uniform surface temperature condition. 

(ii) The fourth-order multi-point finite difference 

5. CONCLUDING REMARKS 
method, together with the logarithmic coordinate 
transformation technique, is a suitable means to 

New bench mark solutions have been presented obtain the BMSs against which other solutions can be 
for the two-dimensional buoyancy driven flow of air compared. 
around a horizontal circular cylinder with Prandtl (iii) The inflow-outflow condition at the outer 
number 0.7. boundary condition used by Kuehn and Goldstein 

The following conclusions may be drawn from the was checked by adopting the solid boundary con- 
present study. dition at 1000-20 0000. As a consequence the inflow- 

1.5 

1.0 

0 

3 

0.5 

0 

0.6 
Kuehn and Goldstein(l980) 

I I ,Wang et aL(1990) 

.C.) 

(Inflow and outflow B.C.) 

0 Experiment 
by Fuji1 et aL(1982) 

----Numerical solution 

0.3’ - 

0.2 - 

pr=0.7 
o., _ Ra=l(r 

I I I I I I I I I 
30 60 90 120 150 

01 ’ 
180 0 30 60 90 120 150 1 

8." 0. 

FIG. 7. Comparison of Nusselt numbers for Ra = 0.37 and FIG. 8. Nusselt number comparison among four numerical 
Pr = 0.7 (Refs. [l9, 201). solutions for Ra = IO’ and Pr = 0.7. 
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Table 3. Local and average Nussclt numbers obtained by five finite difference schemes for Ra = IO’ and Pr = 0.7 

Nil 

Method u=o 30 60 90 I20 150 I80 NU 

EX-I 9.669 9.567 9.257 8.731 7.909 5.900 I.960 7.881 
ME-I 9.632 9.532 9.229 8.713 7.906 5.912 I .988 7.867 
ME-2 9.634 9.535 9.234 8.722 7.915 5.922 2.018 7.874 
ME-3 9.648 9.547 9.243 8.725 7.916 5.915 1.987 7.877 
ME-4 9.675 9.577 9.278 8.765 7.946 5.89 I I .987 7.898 

D ~180 Kuehn and Goldleln(1990) 

.l.9xlO’Have”er and Radley(1972) 

. 1  .Ox,O’K”ehn and Goldsteh(l990) 

0 1 2 3 4 5 6 7 

Y8 

FIG. 9. Comparison between numerical solutions and exper- 
imental data for Ru = IO’ and Pr = 0.7. 

outflow condition gives a significant discrepancy com- 
pared with the solid boundary condition. 

In closing, the authors hope that precise exper- 
iments will be done and their data compared with our 
BMSs in the near future. 
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